
Some Practical Guidelines for Effective Sample-Size Determination

Russell V. Lenth∗

Department of Statistics
University of Iowa

March 1, 2001

Abstract

Sample-size determination is often an important step in planning a statistical study—and it is usually
a difficult one. Among the important hurdles to be surpassed, one must obtain an estimate of one or
more error variances, and specify an effect size of importance. There is the temptation to take some
shortcuts. This paper offers some suggestions for successful and meaningful sample-size determination.
Also discussed is the possibility that sample size may not be the main issue, that the real goal is to
design a high-quality study. Finally, criticism is made of some ill-advised shortcuts relating to power
and sample size.
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1 Sample size and power

Statistical studies (surveys, experiments, observational studies, etc.) are always better when they are care-
fully planned. Good planning has many aspects. The problem should be carefully defined and operational-
ized. Experimental or observational units must be selected from the appropriate population. The study must
be randomized correctly. The procedures must be followed carefully. Reliable instruments should be used
to obtain measurements.

Finally, the study must be of adequate size, relative to the goals of the study. It must be “big enough”
that an effect of such magnitude as to be of scientific significance will also be statistically significant. It is
just as important, however, that the study not be “too big,” where an effect of little scientific importance is
nevertheless statistically detectable. Sample size is important for economic reasons: An under-sized study
can be a waste of resources for not having the capability to produce useful results, while an over-sized one
uses more resources than are necessary. In an experiment involving human or animal subjects, sample size
is a pivotal issue for ethical reasons. An under-sized experiment exposes the subjects to potentially harmful
treatments without advancing knowledge. In an over-sized experiment, an unnecessary number of subjects
are exposed to a potentially harmful treatment, or are denied a potentially beneficial one.

For such an important issue, there is a surprisingly small amount of published literature. Important gen-
eral references include Mace (1964), Kraemer and Thiemann (1987), Cohen (1988), Desu and Raghavarao
(1990), Lipsey (1990), Shuster (1990), and Odeh and Fox (1991). There are numerous articles, especially
in biostatistics journals, concerning sample-size determination for specific tests. Also of interest are studies
of the extent to which sample size is adequate or inadequate in published studies; see Freiman et al. (1986)
and Thornley and Adams (1998). There is a growing amount of software for sample-size determination,
including nQuery Advisor(Elashoff, 2000),PASS(Hintze, 2000),UnifyPow (O’Brien, 1998), andPower
and Precision(Borenstein et al., 1997). Web resources include a comprehensive list of power-analysis soft-
ware (Thomas, 1998) and online calculators such as Lenth (2000). Wheeler (1974) provides some useful
approximations for use in linear models; Castelloe (2000) gives an up-to-date overview of computational
methods.

There are several approaches to sample size. For example, one can specify the desired width of a
confidence interval and determine the sample size that achieves that goal; or a Bayesian approach can be
used where we optimize some utility function—perhaps one that involves both precision of estimation and
cost. One of the most popular approaches to sample-size determination involves studying the power of a test
of hypothesis. It is the approach emphasized here, although much of the discussion is applicable in other
contexts. The power approach involves these elements:

1. Specify a hypothesis test on a parameterθ (along with the underlying probability model for the data).

2. Specify the significance levelα of the test.

3. Specify aneffect sizẽθ that reflects an alternative of scientific interest.

4. Obtain historical values or estimates of other parameters needed to compute the power function of the
test.

5. Specify a target valuẽπ of the power of the test whenθ = θ̃ .

Notationally, the power of the test is a functionπ(θ ,n,α, . . .) wheren is the sample size and the “. . . ” part
refers to the additional parameters mentioned in step 4. The required sample size is the smallest integern
such thatπ(θ̃ ,n,α, . . .)≥ π̃.
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Figure 1: Software solution (Java applet in Lenth, 2000) to the sample-size problem in the blood-pressure
example.

Example To illustrate, suppose that we plan to conduct a simple two-sample experiment comparing a
treatment with a control. The response variable is systolic blood pressure (SBP), measured using a standard
sphygmomanometer. The treatment is supposed to reduce blood pressure; so we set up a one-sided test of
H0 : µT = µC versusH1 : µT < µC, whereµT is the mean SBP for the treatment group andµC is the mean
SBP for the control group. Here, the parameterθ = µT − µC is the effect being tested; thus, in the above
framework we would writeH0 : θ = 0 andH1 : θ < 0.

The goals of the experiment specify that we want to be able to detect a situation where the treatment
mean is 15 mm Hg lower than the control group; i.e., the required effect size isθ̃ = −15. We specify that
such an effect be detected with 80% power (π̃ = .80) when the significance level isα = .05. Past experience
with similar experiments—with similar sphygmomanometers and similar subjects—suggests that the data
will be approximately normally distributed with a standard deviation ofσ = 20 mm Hg. We plan to use a
two-sample pooledt test with equal numbersn of subjects in each group.

Now we have all of the specifications needed for determining sample size using the power approach, and
their values may be entered in suitable formulas, charts, or power-analysis software. Using the computer
dialog shown in Figure 1, we find that a sample size ofn = 23 per group is needed to achieve the stated
goals. The actual power is .8049.

The example shows how the pieces fit together, and that with the help of appropriate software, sample-
size determination is not technically difficult. Defining the formal hypotheses and significance level are
familiar topics taught in most introductory statistics courses. Deciding on the target power is less familiar.
The idea is that we want to have a reasonable chance of detecting the stated effect size. A target value of .80
is fairly common and also somewhat minimal—some authors argue for higher powers such as .85 or .90. As
power increases, however, the required sample size increases at an increasing rate. In this example, a target
power ofπ̃ = .95 necessitates a sample size ofn= 40—almost 75% more than is needed for a power of .80.

The main focus of this article is the remaining specifications (items (3) and (4)). They can present
some real difficulties in practice. Who told us that the goal was to detect a mean difference of 15 mm Hg?
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How do we know thatσ = 20, given that we are only planning the experiment and so no data have been
collected yet? Such inputs to the sample-size problem are often hard-won, and the purpose of this article
is to describe some of the common pitfalls. These pitfalls are fairly well known to practicing statisticians,
and are discussed in several applications-oriented papers such as Muller and Benignus (1992) and Thomas
(1997); but there is not much discussion of such issues in the “mainstream” statistical literature.

Obtaining an effect size of scientific importance requires obtaining meaningful input from the researcher(s)
responsible for the study. Conversely, there are technical issues to be addressed that require the expertise of
a statistician. Section 2 talks about each of their contributions. Sometimes, there are historical data that can
be used to estimate variances and other parameters in the power function. If not, a pilot study is needed. In
either case, one must be careful that the data are appropriate. These aspects are discussed in Section 3.

In many practical situations, the sample size is mostly or entirely based on non-statistical criteria. Sec-
tion 4 offers some suggestions on how to examine such studies and help ensure that they are effective.
Section 5 makes the point that not all sample-size problems are the same, nor are they all equally important.
It also discusses the interplay between study design and sample size.

Since it can be so difficult to address issues such as desired effect size and error variances, people try
to bypass them in various ways. One may try to redefine the problem, or rely on arbitrary standards; see
Section 6. We also argue against various misguided uses of retrospective power in Section 7.

The subsequent exposition makes frequent use of terms such as “science” and “research.” These are
intended to be taken very broadly. Such terms refer to the acquisition of knowledge for serious purposes,
whether they be advancement of a scholarly discipline, increasing the quality of a manufacturing process,
or improving our government’s social services.

2 Eliciting effect size

Recall that one step in the sample-size problem requires eliciting an effect size of scientific interest. It is not
up to a statistical consultant to decide this; however, it is her responsibility to try to elicit this information
from the researchers involved in planning the study.

The problem is that researchers often don’t know how to answer the question, or don’t know what is
being asked, or don’t recognize it as a question that they are responsible for answering. This is especially
true if it is phrased too technically, e.g., “How big a difference would be important for you to be able to
detect with 90% power using a Satterthwaitet test withα = .05?” The response will likely be “Huh??” or
“You’re the statistician—what do you recommend?” or “Any difference at all would be important.”

Better success is achieved by asking concrete questions and testing out concrete examples. A good
opening question is: “What results do you expect (or hope to see)?” In many cases, the answer will be an
upperbound onθ̃ . That is because the researcher probably would not be doing the study if she does not
expect the results to be scientifically significant. In this way, we can establish alower bound on the required
sample size. To narrow it down further, ask questions like: “Would an effect of half that magnitude [but give
the number] be of scientific interest?” Meanwhile, be aware that halving the value ofθ̃ will approximately
quadruple the sample size. Trial calculations ofn for various proposals will help to keep everything in focus.
You can also try a selection of effect sizes and corresponding powers, e.g., “With 25 observations, you’ll
have a 50% chance of detecting a difference of 9.4 mm Hg, and a 90% chance of detecting a difference of
16.8 mm Hg.” Along the same lines, you can show the client the gains and losses in power or detectable
effect size due to increasing or decreasingn, e.g., “if you’re willing to pay for 6 more subjects per treatment,
you’ll be able to detect a difference of 15 mm Hg with 90% power.”

It may be beneficial to ask about relative differences instead of absolute ones; e.g., “Would a 10%
decrease in SBP be of practical importance?” Also, it may be effective to reverse the context to whatcannot
be detected: “What is the range of clinical indifference?” And you can appeal to the researcher’s values: “If
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you were the patient, would the benefits of reducing SBP by 15 mm Hg outweigh the cost, inconvenience,
and potential side effects of this treatment?” This latter approach is more than just a trick to elicit a response,
because such value judgments are of great importance in justifying the research.

Boen and Zahn (1982), page 119–122, discuss some of the human dynamics involved in discussing
sample size (mostly as distinct from effect size). They suggest asking directly for an upper bound on sample
size, relating that most clients will respond readily to this question. Given the above method for establishing
a lower bound, things might get settled pretty quickly—unless, of course, the lower bound exceeds the upper
bound! (See Section 4 for suggestions if that happens.)

Industrial experiments offer an additional perspective for effect-size elicitation: the bottom line. Sample
size relates to the cost of the experiment, and target effect size is often related directly to hoped-for cost
savings due to process improvement. Thus, sample size may be determinable from a type of cost/benefit
analysis.

Note that the discussion of tradeoffs between sample size and effect size requires both the technical skills
of the statistician and the scientific knowledge of the researcher. Scientific goals and ethical concerns must
both be addressed. The discussion of ethical values involves everyone, including researchers, statisticians,
and lab technicians.

3 Finding the right variance

Power functions usually involve parameters unrelated to the hypotheses. Most notably, they often involve
one or more variances. For instance, in the SBP example above, we need to know the residual variance of
the measurements in the planned two-sample experiment.

Our options are to try to elicit a variance from the experimenter by appealing to his experience, to use
historical data, or to conduct a pilot study. In the first approach, investigators often have been collecting
similar data to that planned for some time, in a clinical mode if not in a research mode; so by talking to
them in the right way, it may be possible to get a reasonable idea of the needed variance. One idea is to ask
the researcher to construct a histogram showing how they expect the data to come out. Then you can apply
simple rules (e.g., the central 95-percent range comprises about four standard deviations, if normal). You
can ask for anecdotal information: “What is the usual range of SBPs? Tell me about some of the smallest
and largest SBPs that you have seen.” Discuss the stories behind some of the extreme measurements to find
out to what extent they represent ordinary variations. (Such a discussion might provide additional input to
the effect-size question as well.)

Historical data include data collected by the investigator in past experiments or work, and data obtained
by browsing the literature. Historical or pilot data donot need to follow the same design as the planned
study; but one must be careful that the right variance is being estimated. For example, the manufacturer of
the sphygmomanometers to be used in the SBP experiment may have published test results that show that
the standard deviation of the readings is 2.5 mm Hg. This figure is not appropriate for use in sample-size
determination, because it probably reflects variations in readings made on the same subject under identical
conditions. The residual variation in the SBP experiment includes variations among subjects.

In general, careful identification and consideration of sources of variation in past studies is much more
important than that they be of the same design. In a blood-pressure-medication study, these sources include:
patient attributes (sex, age, risk factors, demographics, etc.), instrumentation, how, when, and who admin-
isters medication and collects data, blind or non-blind studies, and other factors. In a simple one-factor
study, suppose that we have past data on a two-factor experiment where male and female subjects were
separately randomized to groups who received different exercise regimens; and that the response variable is
SBP measured using instruments identical to those that you plan to use. This may provide useful data for
planning the new study—but you have to be careful. For example, the residual variance of the old study
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does not include variations due to sex. If the new study uses subjects of mixed sex, then the variation due to
sex must be included in the error variance used in sample-size planning. Another issue is whether, in each
study, the same person takes all measurements, or if it is done by several people—and whether their training
is comparable. All of these factors affect the error variance. It can be a very difficult process to identify the
key sources of variation in past studies, especially published ones. You are probably better off with complete
information on all the particulars of a small number of past studies than with scant information on a large
number of published studies.

After identifying all of the important sources of variation, it may be possible to piece together a suitable
estimate of error variance using variance-component estimates. Skill in thinking carefully about sources of
variation, and in estimating them, is an important reason why a statistician should be involved in sample-size
planning.

There may be substantial uncertainty in variance estimates obtained from historical or pilot data (but in
many cases, the fact that sample-size planning is consideredat all is a big step forward). There is some
literature on dealing with variation in pilot data; a good starting point is Taylor and Muller (1995). Also,
Muller and Benignus (1992) and Thomas (1997) discuss various simpler ways of dealing with these issues,
such as sensitivity analyses.

Finally, once the data are collected, it is useful to compare the variances actually observed with those that
were used in the sample-size calculations. This will not help in the design of the present study, but is helpful
as part of a learning process leading to better success in designing future studies. Big discrepancies should be
studied to try to identify what was overlooked; small discrepancies help build a track record of success. On
a related matter, careful documentation of a study and its analysis is important not only for proper reporting
of the present study, but for possible use as historical data in future sample-size determinations.

4 What to do if you have no choice about sample size

Often, a study has a limited budget, and that in turn determines the sample size. Another common situation is
that a researcher or senior colleague (or indeed a whole research area) may have established some convention
regarding how much data is “enough.” Some amusing anecdotes of the latter type are related in Boen and
Zahn (1982), pages 120–121.

It is hard to argue with budgets, journal editors, and superiors. But this does not mean that there is no
sample-size problem. As we discuss in more detail in Section 5, sample size is but one of several quality
characteristics of a statistical study; so ifn is held fixed, we simply need to focus on other aspects of study
quality. For instance, given the budgeted (or imposed) sample size, we can find the effect sizeθ̈ such that
π(θ̈ ,n,α, . . .) = π̃. Then the value of̈θ can be discussed and evaluated relative to scientific goals. If it is too
large, then the study is under-powered, and then the recommendation depends on the situation. Perhaps this
finding may be used to argue for a bigger budget. Perhaps a better instrument can be found that will bring
the study up to a reasonable standard. Last (but definitely not least), re-consider possible improvements to
the study design that will reduce the variance of the estimator ofθ , e.g., using judicious stratification or
blocking..

Saying that the study should not be done at all is probably an unwelcome (if not totally inappropriate)
message. The best practical alternatives are to recommend that the scope of the study be narrowed (e.g.,
more factors are held fixed), or that it be proposed as part of a sequence of studies. The point is that just
because the sample size is fixed does not mean that there are not some other things that can be changed in
the design of the study.

It is even possible thaẗθ (as defined above) issmallerthan necessary—so that the planned study is over-
powered. Then the size of study could be reduced, perhaps making the resources available for some other
study that is less adequate. (As Boen and Zahn (1982) points out, even this may not be welcome news, due
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to prejudices about what sample size is “right.”) An alternative might be to keep the sample size fixed, but
to broaden the scope of the study (broader demographics of subjects, additional suppliers of raw material,
etc.); that will make the results more widely applicable, thus obtaining more “bang for the buck.” When
animal or human subjects are involved, an over-powered study raises a serious ethical dilemma. Fortunately,
institutional review boards are becoming more sophisticated on power and sample-size issues, so there is
hope that there will be fewer unnecessarily large studies in the future.

5 Not all sample-size problems are the same

Not all sample-size problems are the same, nor is sample size equally important in all studies. For exam-
ple, the ethical issues in an opinion poll are very different from those in a medical experiment, and the
consequences of an over- or under-sized study also differ.

In an industrial experiment, it may take only minutes to perform an experimental run, in which case
there are few consequences if the experiment is too small. A clinical study may be relatively short-term and
involve some potential risk to patients. In such situations, it may be desirable to proceed in a sequence of
small experiments, with interim analyses in between.

Sample-size issues are usually more important when it takes a lot of time to collect the data. An agri-
cultural experiment may require a whole growing season, or even a decade, to complete. If its sample size
is not adequate, the consequences are severe. It thus becomes much more important to plan carefully, and
to place greater emphasis on hedging for the possibility of under-estimating the error variance, since that
would cause us to under-estimate the sample size.

There is a continuum of situations in between. Part of the conversation in sample-size planning should
center on the consequences of getting it wrong: What if we find ourselves wanting a follow-up study? How
much will that set us back? Can we budget for it? What are the ethical issues in a study that is too large
or too small? Answers to such questions will help to decide how liberal or conservative we need to be in
sample-size calculations.

Sample-size problems also vary widely in their complexity. If normally distributed data can be expected,
and we have, say, a randomized complete-block design, then available tables, charts, or software can be
used. If the analysis will be a multi-factor mixed-effects analysis of variance for balanced data, there are a
number of tests to consider and a number of variance components to keep track of; but a good mathematical
statistician might still be able to find or improvise a reasonable answer (unfortunately, most textbooks, if they
mention sample size at all, don’t go beyond the very simplest scenarios). If there will be substantial non-
response, censoring, or correlated multivariate responses, the only recourse may be simulation of several
plausible scenarios to get an idea of how good the proposed study is. Additional complications can hold
for attribute data, due to failures of asymptotic tests, inability to achieve a stated size due to discreteness,
or unusual situations such as inferences about rare attributes (Wright, 1997). Simulation methods again are
helpful in addressing these problems.

Finally, there is really no such thing as just a sample-size problem. Sample size is but one aspect of study
design. When you are asked to help determine sample size, a lot of questions must be asked and answered
before you even get to that one: Exactly what are the goals? Are you really asking about sample size? Is
it even a statistical study? What is the response variable, how do you plan to take measurements, and are
there alternative instruments? What can go wrong? What is your estimate of the non-response rate? What
are the important sources of variation? How can we design the study to estimateθ efficiently? What is the
time frame? What are the other practical constraints? You may often end upneverdiscussing sample size
because these other matters override it in importance.
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6 Avoid “canned” effect sizes

Most of the rest of this article discusses some practices to avoid. First and foremost of these is the all-too-
common misuse of the effect-size measures described in Cohen (1988). For a pooledt test, Cohen defines
an effect-sized to be the target difference of means divided by the error standard deviation (i.e.,d = θ̃/σ ).
I call d a standardizedeffect size because it is unit-free, compared with an absolute effect size likeθ̃ that
has units attached (such as mm Hg). Cohen suggests guidelines ford: it is “small,” “medium,” or “large” if
d is .20, .50, or .80 respectively. These assessments are based on an extensive survey of statistics reported
in the literature in the social sciences. Accordingly, many researchers have been misguided into using these
as targets; e.g., find the sample size needed to detect a “medium” effect at 80% power.

As is discussed above, eliciting meaningful effect sizes and estimating error variances constitute two po-
tentially difficult obstacles in addressing sample-size problems. Using Cohen’s effect sizes as targets, we just
appeal to conventions and avoid having to talk about eitherθ̃ or σ—sounds like a good deal, right? Wrong!
Consider, for example, an industrial experiment where measurements could be made using a coordinate-
measuring machine (accurate to a few microns), a vernier caliper (accurate to a few thousandths of an inch),
or a school ruler (accurate to a sixteenth of an inch). No matter which you use, you get the same sample size
for a “medium” effect at 80% power. Obviously, your choice of instrumentation has a huge effect on the
results, and so it should affect your sample-size calculations. There is no honest way to avoid talking about
θ̃ andσ separately.

The combination ofα, π̃, and a standardized effect size completely determines the sample size for any
study of a specified design. Thus, asking for a small, medium, or large standardized effect size is just a fancy
way of asking for a large, medium, or small sample size, respectively. If only a standardized effect is sought
without regard for how this relates to an absolute effect, the sample-size calculation is just a pretense.

Standardized-effect-size goals are misused in many other situations. For example, in simple linear
regression of a variabley on another variablex, the correlation (or squared correlation) betweenx andy
can serve as a standardized effect-size measure. This measure encapsulates three quantities: the slope
of the line, the error variance, and the variance of thex values. These are, respectively, absolute effect
size, variance, and experimental design—the three aspects of study design emphasized most strongly in the
preceding sections. It is mandatory that these three quantities be considered separately, rather than being
lumped together into a singleR2 measure.

7 Avoid retrospective planning

Another way to dance around having to elicit effect sizes and variances is to table those issues until after the
study is completed. At that point, we will have estimates of all the effect sizes and variances we need, and
so are able to a kind of retrospective sample-size or power analysis.

Let us look first at the case where the statistical test is “significant”; then there is a clear result that can be
acted upon (provided that it is also of sufficient magnitude to be of scientific importance). The present study
will not continue, or at least the focus will shift to something else. Of course, there is the possibility that
the study included far more data than were really needed, and this can be grounds for criticism on ethical or
economic grounds.

On the other hand, if the test turns out to be “non-significant,” the researchers may want to design a
follow-up study with sufficient data so that an effect of the same size as that observed in the study would be
detected. In other words, one specifiesθ̃ = θ̂ in designing the follow-up study. This is a form ofpost hoc
or retrospective effect-size elicitation. This is quite different from effect-size elicitation based on scientific
goals. The goal now is really to collect enough additional data to obtain statistical significance, while
ignoring scientific meaning. It is asterisk-hunting. While acknowledging that many journals seem to use
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statistical significance as a yardstick to measure publishability of research results, this tendency can hardly
be applauded.

There is another popular strategy, equally bad, for dealing with a nonsignificant finding: it is to attempt
to make an inference based on the power at the observed effect size:

πobs= π(θ̂ ,n,α, . . .)

whereθ̂ is the observed estimate ofθ . We will refer to this quantity as the “observed power.” Despite its
popularity, observed power only confuses the issue; it does not provide any additional insight beyond the
results of the statistical test. The automotive analogy is that if your car made it to the top of the hill, it was
powerful enough; if it didn’t, it wasn’t powerful enough.

Hoenig and Heisey (2001) explain the pitfalls of observed power in detail. The main technical point is
that it can be shown thatπobs is a decreasing function of theP value of the test; we already know how to
interpretP values, so we don’t need observed power. One of Hoenig and Heisey’s most important points
concerns a common claim made by proponents of observed power: that if the test is nonsignificant but
the observed power is high, then there is strong statistical evidence supporting the belief thatH0 is true.
However, since observed power increases as theP value decreases, high observed power constitutes evidence
againstthe null hypothesis—the opposite of the proponents’ claims.

I have also seen observed power used in a way that exaggerates or distorts the statistical results: “Not
only is it significant, but the test is really powerful!”—or: “The results are not significant, but that’s because
the test is not very powerful.” The relation betweenπobsandP values shows that if the test is significant, the
power is bound to be high, and when it’s non-significant, the power is bound to be low. (In the case of at
test, or other statistic that has a fairly symmetric distribution, the borderline case whereP = α corresponds
to πobs≈ 50%.)

There is yet another type of retrospective power worth mentioning (and discounting). Suppose that we
examine the value ofπ(θ̃ ,n,α, . . .) after collecting the data (using the data to estimate auxiliary parameters
such as the error SD). This differs from observed power in that it uses a specified effect sizeθ̃ of scientific
meaning, rather than the observed effectθ̂ . If this retrospective power is high in a case where the null
hypothesis is not rejected, it is claimed that one can establish a reasonable certainty that the effect size is
no more thanθ̃ . (It is also possible to construct confidence bounds on this power). Again, this is a faulty
way to do inference; Hoenig and Heisey (2001) point out out that it is in conflict with an inference based
on a confidence interval. For example, in at-test situation, a 95% confidence interval forθ will contain θ̃

values that can be refuted with nearly 97.5% power; so there are values ofθ̃ that the confidence procedure
considers plausible that are implausible based on the power calculation. Aθ̃ outside the confidence interval
is already refuted by a statistical test, and hence a power calculation is superfluous.

Obviously, using retrospective power for making an inference is a convoluted path to follow. The main
source of confusion is that it tends to be used to add interpretation to a non-significant statistical test; one
then begins contemplating the possibility that|θ | really is small, and wants to prove it. That implies a
different statistical test! The correct way to proceed is not to look at the power of the original test—for
which the hypotheses are formulated inappropriately—but to do a formal test of equivalence. A test of
equivalence has hypothesesH0 : |θ | ≥ θ̃ versusH1 : |θ |< θ̃ where, as before,̃θ is an effect size deemed to
be of scientific importance. A good approximate test (see Schuirmann, 1987) rejectsH0 at significance level
α if the 100(1−2α)% confidence interval forθ lies entirely within the interval(−θ̃ ,+θ̃).

8 Conclusions

Sample-size planning is often important, and almost always difficult. It requires care in eliciting scientific
objectives and in obtaining suitable quantitative information prior to the study. Successful resolution of the
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sample-size problem requires the close and honest collaboration of statisticians and subject-matter experts.
One cannot avoid addressing the issues of effect-size elicitation (in absolute terms) and estimating the

error variance, as difficult as these may be. Standardized effects do not translate into honest statements about
study goals. Observed power adds no information to the analysis, and retrospective effect-size determination
shifts attention toward obtaining asterisk-studded results independent of scientific meaning. Note that both
of these retrospective methods use an estimated effect size in place of one that is determined by scientific
concerns. The error in confusing these is exactly the error made when statistical significance is confused
with scientific significance.

It is a practical reality that sample size is not always determined based on noble scientific goals. Then
it is important to evaluate the proposed study to see if it will meet scientific standards. Various types of
changes to the study can be recommended if it turns out to be over- or under-powered.

Sample-size problems are context-dependent. For example, how important it is to increase the sample
size to account for such uncertainty depends on practical and ethical criteria. Moreover, sample size is not
always the main issue; it is only one aspect of the the quality of a study design.

Besides the power approach discussed here, there are other respectable approaches to sample-size plan-
ning, including Bayesian ones and frequentist methods that focus on estimation rather than testing. While
technically different, those approaches also require care in considering scientific goals, incorporating pilot
data, ethics, and study design. Good consulting techniques have broad applicability anyway; for example,
many of the ideas suggested for eliciting effect size can be easily adapted to eliciting a useful prior distribu-
tion in a Bayesian context; and conversely, good techniques for eliciting a prior might be useful in setting
an effect size.
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